“艾伦教授,很高兴见到您。”

    加州大学的圣塔芭芭拉分校区中,科技博🝬🎏客的媒体记者热情的和眼前的诺奖老人握了握手,打了个招呼🄍🄍。

    老⚯🔽🆇人笑着握了握手,点了点头示意道:♨🊹“坐吧,我的助手已经跟我说过了🚈👖。”

    浅聊了一下后,科技博客的媒体记者开口道:“艾伦教🇓😅授,关于最近arixv上很火的那篇有关于锂枝晶⛥🜤难🆆🍑题的论文您看过了吗?听说那位徐教授研发出来了解决锂枝晶难题的方法?”

    艾伦·黑格点了点头,道:“已经看过了,是篇相当精彩的论文,目前我们正在依据论文🋻🞥🖏上的方法重复实验。🆆🍑”

    记者有些惊讶的问道:“难道它是对的?”

    艾伦·黑格教授摇了摇头,道:🗳“暂时还🝬🎏不知道,在实验结果没有出来前,🝚我也没法保证说它一定就能解决锂枝晶难题。”

    “不过.....”

    迟疑了一下,老人接着道:“🃐🖽从理论上来说,它极有可能是对的。”

    “而且根据我的了解,目前已经有不少的高校或实验室复刻出了这项成果,从初步的测试来看,这种人工sei薄膜能够在很🂨👒大程度上抑制锂枝晶的生长。”

    闻言,科技博客的媒体记者迅速问道:“那如果锂枝晶问题被解决了,它会给我们的生活带来什么样的变🈉化?”

    艾伦教授🂟沉吟了一下后缓慢的开口道:“锂枝晶难题是锂电池🌂🟝🞈中最大的一个,它对锂电池的发展意义相当重大。”

    “首先可以肯定的是,如果锂枝晶🀘☪🂐问题能得🚍到🍷🌱解决,我们将得到容量更高的锂电池。”

    “毕竟锂离子电池的容量主要取决于正、负极活性材料的质量和配比,而正负极材料又决定😴🅪🉛了电池的能量密度。”

    “而无论是我们现在使用的锂离子电池,还🚍是全世界都在研发🌂🟝🞈的锂硫电池,甚至是还在♒🇵理论阶段锂空气电池,都绕不开锂枝晶生成的问题。”

    “举👌🇞🙨个🍟🉖很简单的例子,当前市面上流通的锂电🍷🌱池,电池的负极材料主要有天然石墨材料、人造石墨材料、硅基等等。”

    “而石墨的理论比容量只有372mah/g,但如果🇓😅将石墨更换成锂金属,其容量可以达到3860mah/g,整整提升了🂠十倍多。”

    老人👌🇞🙨简洁话语和对比,让正在采访的媒体记者倒吸了口凉气,脸上露出了震惊的表情。

    如果说用其他的方式来描述,或🗳许还达不到这个🎧效果。

    但是👌🇞🙨三位数和四位数一对🇗比,恐怕任谁都🝬🎏清楚。

    震惊过后,科技博客的媒体💫记者的眼中带着兴奋的光芒,迅速问道:“也就🝚是说,如果锂🋻🞥🖏枝晶难题得到解决,我们将得到拥有十倍续航能力的电池?”