哥德巴赫猜想最初指的是,任一大于2的整数,都可以写成三个质数之和。
后来,因为现金数学奖,已经不使用“1也是素数”这个约定。
原初猜想的陈述,也就变为了,任一大于5的整数,都可写成三个质数之和。
至于,现如今常见的猜想陈述,则是欧拉在给哥德巴赫的回信中,所提出的等价版本。
也就是,任一大于2的偶数,都可写成两个质数之和。
这里面的等价转换,就很简单了。
从n>5开始考虑。
当n为偶数,n=2+,n-2也是偶数,可以分解为两个质数的和。
当n为奇数,n=3+,n-3也是偶数,可以分解为两个质数的和。
这也被称为“强哥德巴赫猜想”,或者“关于偶数的哥德巴赫猜想”。
陈舟边思考,边在草稿纸上,记录一些必要的内容。
一秒记住
对于数学猜想的研究,猜想的表述,猜想的公式化。
是最开始,也是最重要的一步。
习惯性的拿笔点了草稿纸一下,陈舟在草稿纸中间空了一截,然后划了一条横线。
横线下方,陈舟写了“弱哥德巴赫猜想”七个字。
然后,陈舟继续在草稿纸上,写了一些关于弱哥德巴赫猜想的内容。
所谓的“弱哥德巴赫猜想”,是从“强哥德巴赫猜想”推出来的。
其陈述为“任一大于7的奇数,都可以写成三个质数之和”。
至于“强弱之分”,则是“强哥德巴赫猜想”成立的话,那“弱哥德巴赫猜想”必然成立。
相对的,两者的难度,也不一样。
后来,因为现金数学奖,已经不使用“1也是素数”这个约定。
原初猜想的陈述,也就变为了,任一大于5的整数,都可写成三个质数之和。
至于,现如今常见的猜想陈述,则是欧拉在给哥德巴赫的回信中,所提出的等价版本。
也就是,任一大于2的偶数,都可写成两个质数之和。
这里面的等价转换,就很简单了。
从n>5开始考虑。
当n为偶数,n=2+,n-2也是偶数,可以分解为两个质数的和。
当n为奇数,n=3+,n-3也是偶数,可以分解为两个质数的和。
这也被称为“强哥德巴赫猜想”,或者“关于偶数的哥德巴赫猜想”。
陈舟边思考,边在草稿纸上,记录一些必要的内容。
一秒记住
对于数学猜想的研究,猜想的表述,猜想的公式化。
是最开始,也是最重要的一步。
习惯性的拿笔点了草稿纸一下,陈舟在草稿纸中间空了一截,然后划了一条横线。
横线下方,陈舟写了“弱哥德巴赫猜想”七个字。
然后,陈舟继续在草稿纸上,写了一些关于弱哥德巴赫猜想的内容。
所谓的“弱哥德巴赫猜想”,是从“强哥德巴赫猜想”推出来的。
其陈述为“任一大于7的奇数,都可以写成三个质数之和”。
至于“强弱之分”,则是“强哥德巴赫猜想”成立的话,那“弱哥德巴赫猜想”必然成立。
相对的,两者的难度,也不一样。