如果在不计成本并且技术达标的情况下,内存(ra)和存储(ro)是⛉😠🂳完可以统一存在的。

    内存📽☫(ra)的优点是很多,例如读写速度快,能够迅速和cpu交换数据,存储🈆🟔单元的内容可按需随意取出或存入,存🄤取的速度与存储单元的位置无关。

    但是缺点也很明显,最🔅主要的一点就是断电后数据自动丢失。另外就是成本高,技术难度大等。

    三星这📯🞗一次涨价后,整个夏国的手机生产商集体噤声默默接受就反应除了夏国在内存制造上的技术空白。

    存储ro的优点和内存(ra)就不同了,在计算机的运行中,存储就是一个大仓库,存储数据量大,不会因为断电而丢失,性能稳定。但🀸是缺点也显而易见,速度慢,性能随着读取🛨🞾🙮次数的增加而降低。

    无论📽☫是存储还是内存,其实对🅩🉎数据存储的基本原理都是相同的

    都是存储“0和“1”,数据的🆔🏕本质也是用🝸🏻“0”和“1”去表示。

    而在存储类型之中,固态硬盘是通过高低电平两种状态来存储“0”和“1”,读写时在电流的作用下改变高低电平来记录数据的增📛🛟🝦加或减少;机械硬盘则是改变内部磁粒的方向来代表“0”和“1”,读写时则是用读写的磁力改变磁粒子的方向来记录数据的增加或减少。

    而内存中,数据的表达形式也是在通电状态下用电子状态表达“0”和“⛉😠🂳1”。

    在上述原理的基础上,能够制造出量子芯片的盘古科技对内存和🐸🄦存储的设计制造几乎是信手拈来。

    萧铭还给实验组的一个🔅一个初步的设想,不要🝯🎮🔜像传统pc或者手机端🜓🁪那样,在材料上完界定内存和存储之间的限制。

    在微核电池始终通电的情况下🅩🉎,以碳化硅为半导体材料的存储介质可以让内存和存储都有革命性的创新。

    碳化硅半导体材料,在其中雕蚀色心之后,🝸🏻色心的功能🖩🕐除了一颗以存储自旋电子,以自旋电子三种状态做运算,成为量子芯片以外,还可以时刻让色心中转载或♵者空载电子,以此来记录数据。

    萧铭有一个大胆的设想要是用自旋电子的叠加态记录🗧数据,这将是🗨🞆一项伟大的创举。

    自旋电子🃷🜞的叠加状态可以记录的数💔据量远远超过了传统的硬盘。

    设想非常美好,但是该技♣🊋🎵术拥有个💔重大的缺陷。

    电子自旋状态持🐜🀪⛐续时间短♣🊋🎵,是不断产生不断消失的过程。

    这是量子芯片能够顺序计算的因素之一,但是也🖣🔝造成了自旋量子无法长期记录数🈏☹据。

    想到这里,🂁🋵萧铭有些头痛,他用手抓着三天没有洗的头发。

    如此以来,是否拥有微核电池对数据的记录不是决定性的作用,决定的作⛉😠🂳用在电子自旋的时间长短。

    时间已经接近了正午,气温飙升到三十五度,今天因为是周末,没有人到总部上班🈆🟔,也没有人为萧铭开空调,萧铭也忘记🄤了这件事。